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organization of the human neocortex
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Abstract

Neurotransmitter receptors support the propagation of signals in the human brain. How receptor sys-
tems are situated within macroscale neuroanatomy and how they shape emergent function remains
poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron
emission tomography data from >1 200 healthy individuals to construct a whole-brain 3-D normative
atlas of 19 receptors and transporters across 9 different neurotransmitter systems. We find that receptor
profiles align with structural connectivity and mediate function, including neurophysiological oscilla-
tory dynamics and resting state hemodynamic functional connectivity. Using the Neurosynth cognitive
atlas, we uncover a topographic gradient of overlapping receptor distributions that separates extrinsic
and intrinsic psychological processes. Finally, we find both expected and novel associations between
receptor distributions and cortical abnormality patterns across 13 disorders. We replicate all findings
in an independently collected autoradiography dataset. This work demonstrates how chemoarchi-
tecture shapes brain structure and function, providing a new direction for studying multi-scale brain
organization.

INTRODUCTION

The brain is a complex system that integrates signals
across spatial and temporal scales to support cognition
and behaviour. The key neural signalling molecule is the
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neurotransmitter: chemical agents that relay messages
across synapses. While neurotransmitters carry the mes-
sage, neurotransmitter receptors act as ears that cover
the cellular membrane, determining how the postsynap-
tic neuron will respond. By modulating the excitability
and firing rate of the cell, neurotransmitter receptors ef-
fectively mediate the transfer and propagation of electri-
cal impulses. As such, neurotransmitter receptors drive
synaptic plasticity, modify neural states, and ultimately
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Receptor/ Neurotransmitter Tracer Measure N Age References

transporter

D dopamine ['1CISCH23390  BPxp 13 (7) 33+ 13 Kaller et al., 2017 [74]

D- dopamine [*!C]FLB-457 BPnp 37 (20) 48.4416.9 Smith et al., 2019 [134, 157]
Do dopamine ['C]FLB-457 BPxp 55(29) 32.5+09.7 ?fgi‘elg?,o;tlgi” %2;5 192]

DAT* dopamine ['231]-FP-CIT SUVR 174 (65) 61411 Dukart et al., 2018 [37]

NET* norepinephrine [''CIMRB BPnp 77 (27) 334492 Dingetal, 2010 [12, 24, 35, 133]
5-HT1a serotonin ['1CIWAY-100635 BPxp 35(17) 26.3+52 Savlietal, 2012 [138]

5-HT15 serotonin [''CIP943 BPyp 65 (16) 33.7+9.7 ?fé{eszit ‘93;,311'6%’0%82’ 118, 136]
5-HTp serotonin ['1C1P943 BPnp 23 (8) 28.7+7.0 Savlietal, 2012 [138]

5-HToa serotonin [''C]Cimbi-36 Bumax 29 (14) 22.6+2.7 Beliveau et al., 2017 [13]
5-HT, serotonin [*1C]SB207145 Binax 59 (18) 25.9+5.3 Beliveau et al., 2017 [13]
5-HT¢ serotonin [''CIGSK215083  BPyp 30 (0)  36.6+9.0 ][{fgilaglzs?“a“ etal, 2018
5-HTT* serotonin ['1CIDASB Bumax 100 (71) 25.1+5.8 Beliveau et al., 2017 [13]

a4fBa acetylcholine [*®F]flubatine Vr 30 (10) 33.5410.7 Hillmer et al., 2016 [9, 65]

M; acetylcholine ['1CILSN3172176 BPxp 24 (11) 40.54+11.7 Naganawa et al., 2021 [103]
VAChT* acetylcholine [**F]FEOBV SUVR 4 (1) 374+10.2  PI: L Tuominen & S Guimond
VAChT* acetylcholine [*®F]FEOBV SUVR 18 (13) 66.8+6.8 Aghourian etal., 2017 [1]
VAChT* acetylcholine ['8F]FEOBV SUVR 5 (1) 68.3+3.1 Bedard et al., 2019 [11]
VAChT* acetylcholine [**F]FEOBV SUVR 33 66.6 - 0.94 PI: TW Schmitz & RN Spreng
NMDA glutamate ['8F]GE-179 Vr 29 (8) 40.94+12.7 Galovic et al., 2021 [53, 54, 94]
mGluRs glutamate [''C]ABP68S BPnp 73 (48) 19.9+3.04 Smartet al., 2019 [155]
mGluRs glutamate [*1C]ABP688 BPnp 22 (10) 67.94+9.6 PI: P Rosa-Neto & E Kobayashi
mGluRs glutamate ['1C]ABP688 BPnp 28 (13) 33.1+11.2 DuBois et al.,, 2016 [36]
GABA4/B7 GABA [*'C]flumazenil Brax 16 (9) 26.6 =8 Ngrgaard et al., 2021 [106]

Hs histamine [''CIGSK189254 Vg 8 (1) 31.74+9.0 Gallezot et al., 2017 [52]

CB, cannabinoid [1!C]OMAR Vr 77 (28)  30.0+8.9 léogr’n}%’fl;‘oegt’ all'z’ 42]015

MOR opioid [*'C]carfentanil BPnp 204 (72) 32.3+10.8 Kantonen et al., 2020 [75]

TABLE 1. Neurotransmitter receptors and transporters included in analyses | BPxp = non-displaceable binding potential; Vi =
tracer distribution volume; Bnax = density (pmol/ml) converted from binding potential (5-HT) or distributional volume (GABA)
using autoradiography-derived densities; SUVR = standard uptake value ratio. Values in parentheses (under N) indicate number
of females. Neurotransmitter receptor maps without citations refer to unpublished data. In those cases, contact information for
the study PI is provided in Table S3. Table S3 also includes more extensive methodological details such as PET camera, number of
males and females, modelling method, reference region, scan length, and modelling notes. Asterisks indicate transporters.

shape network-wide communication [149, 152, 174].

How spatial distributions of neurotransmitter recep-
tors relate to brain structure and shape brain function
at the system level remains unknown. Recent technolog-
ical advances allow for high resolution reconstructions
of the brain’s wiring patterns. These wiring patterns
display non-trivial architectural features including spe-
cialized network modules that support the segregation
of information [160], as well as densely interconnected
hub regions that are thought to support the integration
of information [159, 175]. The spatial arrangement of
neurotransmitter receptors on this network presumably
guides the flow of information and the emergence of
cognitive function. Therefore, understanding the link
between structure and function is inherently incomplete
without a comprehensive map of the chemoarchitecture
of the brain [81, 113, 193, 195].

A primary obstacle to studying the relative density dis-

tributions of receptors across multiple neurotransmitter
systems is the lack of comprehensive openly accessible
datasets. An important exception is the autoradiogra-
phy dataset of 15 neurotransmitter receptors and recep-
tor binding sites, collected in three post-mortem brains
[193]. However, these autoradiographs are only avail-
able in 44 cytoarchitectonically defined cortical areas.
Alternatively, positron emission tomography (PET) can
estimate in vivo receptor concentrations across the whole
brain. Despite the relative ease of mapping receptor den-
sities using PET, there are nonetheless difficulties in con-
structing a comprehensive PET dataset of neurotransmit-
ter receptors. Due to the radioactivity of the injected
PET tracer, mapping multiple different receptors in the
same individual is not considered a safe practice. Com-
bined with the fact that PET image acquisition is rela-
tively expensive, cohorts of control subjects are small
and typically only include one or two tracers. There-
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Figure 1. PET images of neurotransmitter receptors and transporters | PET tracer images were collated and averaged to
produce mean receptor distribution maps of 19 different neurotransmitter receptors and transporters across 9 different neuro-
transmitter systems and a combined total of over 1200 healthy participants.

fore, constructing a comprehensive atlas of neurotrans-
mitter receptor densities across the brain requires exten-
sive data sharing efforts from multiple research groups
[13, 38, 80, 92, 106, 108].

Here we curate and share an atlas of PET-derived
whole-brain neurotransmitter receptor maps from 19
unique neurotransmitter receptors, receptor binding
sites, and transporters, across 9 different neurotrans-
mitter systems and over 1200 healthy individuals,
available at https://github.com/netneurolab/hansen
receptors. We use multiple imaging modalities to com-
prehensively situate cortical neurotransmitter receptor
densities within microscale and macroscale neural archi-
tectures. Using diffusion weighted MRI and functional
MRI, we show that neurotransmitter receptor densities
follow the organizational principles of the brain’s struc-
tural and functional connectomes. Moreover, we find
that neurotransmitter receptor densities shape magne-
toencephalography (MEG)-derived oscillatory neural dy-
namics. To determine how neurotransmitter receptor
distributions affect cognition and disease, we map re-
ceptor densities to meta-analytic (Neurosynth-derived)
functional activations, where we uncover a spatially co-
varying axis of neuromodulators and mood-related pro-
cesses. Next, we link receptor distributions to ENIGMA-
derived patterns of cortical atrophy across 13 neurolog-
ical, psychiatric, and neurodevelopmental disorders, un-
covering specific receptor-disorder links. We validate our
findings and extend the scope of the investigation to ad-
ditional receptors using an independently collected au-
toradiography neurotransmitter receptor dataset [194].

Altogether we demonstrate that, across spatial and tem-
poral scales, chemoarchitecture consistently plays a key
role in brain function.

RESULTS

A comprehensive cortical profile of neurotransmitter
receptor densities was constructed by collating PET im-
ages from a total of 19 different neurotransmitter recep-
tors, transporters, and receptor binding sites, across 9
different neurotransmitter systems, including dopamine,
norepinephrine, serotonin, acetylcholine, glutamate,
GABA, histamine, cannabinoid, and opioid (Fig. 1). All
PET images are acquired in healthy participants (see Ta-
ble 1 for a complete list of receptors and transporters,
corresponding PET tracers, ages, and number of partici-
pants). Each PET tracer map was processed according to
the best practice for the radioligand; for detailed acquisi-
tion and processing protocols see the publications listed
in Table 1. A group-average tracer map was constructed
across participants within each study. To mitigate varia-
tion in image acquisition and preprocessing, and to ease
biological interpretability, all PET tracer maps were par-
cellated into the same 100 cortical regions and z-scored
[139]. Note that although the data includes both cortical
and subcortical data, we restrict our analyses to the cor-
tex. After parcellating and normalizing the data, maps
from different studies of the same tracer were averaged
together (Fig. S1 shows consistencies across studies). In
total, we present tracer maps for 19 unique neurotrans-
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Figure 2. Constructing a cortical neurotransmitter receptor and transporter atlas | PET maps for 19 different neurotransmitter
receptors and transporters were z-scored and collated into a single neurotransmitter receptor atlas. (a) For each pair of brain
regions, the receptor density profiles are correlated (Pearson’s r) to construct the receptor similarity matrix (ordered according
to the Yeo-Krienen intrinsic networks: frontoparietal, default mode, dorsal attention, limbic, ventral attention, somatomotor,
visual [191]). (b) Receptor similarity is approximately normally distributed. (c) Receptor similarity decays exponentially with
the Euclidean distance between centroid coordinates of brain regions. (d) The first principal component of receptor density. (e)
The first principal gradient of receptor density stratified by classes of laminar differentiation reveals a gradient from idiotypic
regions to paralimbic regions (one-way ANOVA F' = 18.26, p < 0.001; PLMB=paralimbic, HET=heteromodal, UNI=unimodal,
IDT=idiotypic) [97, 116]. (f) The principal receptor gradient is significantly correlated with synapse density (measured using
the synaptic vesicle glycoprotein 2A-binding [**C]-UCBJ PET tracer; Pearson’s r(98) = 0.40, pspin = 0.001, CI = [0.23,0.56]
two-tailed). (g) Pearson’s correlation between pairs of receptor/transporter distributions are shown stratified by excitatory vs.
inhibitory, monoamine vs. non-monoamine, ionotropic vs. metabotropic, and Gs- vs. Gi- vs. Gq-coupled metabotropic receptors.

mitter receptors and transporters from a combined to- Receptor distributions reflect structural and functional
tal of 1238 healthy participants, resulting in a 100 x 19 organization

matrix of relative neurotransmitter receptor/transporter
densities. Finally, we repeat all analyses in an indepen-
dently collected autoradiography dataset of 15 neuro-
transmitter receptors (Table S1; [194]), and across al-
ternative brain parcellations [139].

To quantify the potential for two brain regions to be
similarly modulated by endogenous or exogenous in-
put, we compute the correlation of receptor/transporter
fingerprints between pairs of brain regions (Fig. 2a).
Hereafter, we refer to this quantity as “receptor sim-
ilarity”, analogous to other commonly used measures
of inter-regional attribute similarity including anatom-
ical covariance [43], morphometric similarity [146],
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Figure 3. Receptor distributions reflect structural and functional organization | (a) Top: group-consensus weighted structural
connectivity matrix. Middle: receptor similarity is significantly greater between regions that are physically connected, against
distance- and edge length-preserving null structural connectivity matrices (p = 0.0001; [16]). Bottom: receptor similarity is
significantly positively correlated with structural connectivity, after distance regression (Pearson’s r(1134) = 0.14, p < 0.001,
CI = [0.08,0.20]). (b) Top: group-average functional connectivity matrix. Middle: receptor similarity is significantly greater
within regions in the same functional network (psin = 0.016). Bottom: receptor similarity is positively correlated with functional
connectivity (Pearson’s r(4948) = 0.22, p < 0.001, CI = [0.20,0.25]). (c) Regional structure-function coupling was computed
as the fit (Rfdj) between communicability of the weighted structural connectome and functional connectivity. Top: structure-
function coupling at each brain region is plotted when receptor similarity is excluded (z-axis) and included (y-axis) in the model.
Yellow points indicate brain regions where receptor information significantly augments structure-function coupling (pspin < 0.05,
FDR-corrected, one-sided). Bottom: the difference in adjusted R? when receptor similarity is and isn’t included in the regression
model. Asterisks in panels (a) and (b) denote significance. Boxplots in panels (a) and (b) represent the 1st, 2nd (median) and
3rd quartiles, whiskers represent the non-outlier end-points of the distribution, and diamonds represent outliers. Connectomes
in panel (a) and (b) are ordered according to the Yeo-Krienen intrinsic networks (order: frontoparietal, default mode, dorsal
attention, limbic, ventral attention, somatomotor, visual) [191].

gene coexpression [5, 49, 125], temporal profile simi-
larity [148], and microstructural similarity [116]. Re-
ceptor similarity is approximately normally distributed
(Fig. 2b), and decreases exponentially with Euclidean
distance which supports the notion that a fundamental
feature of the brain is its spatial autocorrelation (Fig. 2c;
[14, 49, 68, 128, 132, 148, 153, 168]). We confirm that
no single receptor or transporter exerts undue influence
on the receptor similarity matrix (see Sensitivity and ro-
bustness analyses).

Receptor similarity addresses the between-region sim-
ilarity of receptor fingerprints. To complement this, we
calculated the first principal component of receptor den-

sity which represents a regional quantification of recep-
tor similarity (Fig. 2d). This gradient separates insu-
lar and cingulate cortex from somatomotor and poste-
rior parietal regions, and resembles the macaque prin-
cipal receptor expression gradient [48]. The first prin-
cipal component differentiates laminar classes, support-
ing the notion that receptor expression strongly depends
on lamination (Fig. 2e, one-way ANOVA F' = 18.26,
p < 0.001; [97, 114, 115]). Additionally, we find
a significant correlation between the receptor gradient
and synapse density, consistent with the finding that the
macaque receptor gradient increases with the number of
dendritic spines (Fig. 2f; Pearson’s r(98) = 0.40, pspin =
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Figure 4. Receptor profiles shape oscillatory neural dynamics | We fit a multilinear regression model that predicts MEG-derived
power distributions from receptor distributions. (a) Receptor distributions closely correspond to all six MEG-derived power bands
(0.81 < Rﬁdj < 0.94). The significance of each model is assessed against a spatial-permutation preserving null model, and
corrected for multiple comparisons (FDR-correction). Asterisks denote significant models (FDR-corrected pspin < 0.05, one-tailed).
(b) Dominance analysis distributes the fit of the model across input variables such that the contribution of each variable can
be assessed and compared to other input variables. The percent contribution of each input variable is defined as the variable’s

dominance normalized by the total fit (Ridj) of the model.

0.001, CI = [0.23,0.56], two-tailed) [48]. For complete-
ness, we stratify receptors by biological mechanisms (ex-
citatory/inhibitory, ionotropic/metabotropic, Gs/Gi/Gq-
coupled metabotropic pathways) and neurotransmitter
protein structure (monoamine/non-monoamine), to pro-
vide additional insight about the underlying biological
pathways (Fig. 2g).

Using group-consensus structural and resting-state
functional connectomes from 326 unrelated individuals
(see Methods for details), we show that neurotransmit-
ter receptor organization reflects structural and func-
tional connectivity. Specifically, we find that recep-
tor similarity is greater between pairs of brain regions
that are structurally connected, suggesting that anatom-
ically connected areas are likely to be co-modulated
(Fig. 3a). To ensure the observed relationship be-
tween structural connections and receptor similarity is
not due to spatial proximity or network topography, we
assessed significance against density-, degree- and edge
length-preserving surrogate structural connectivity ma-
trices (p = 0.0001, 10 000 repetitions [16]). Additionally,
we find that receptor similarity is significantly correlated
with structural connectivity, after regression Euclidean
distance from both modalities (Pearson’s r(1134) = 14,
p < 0.001, CI = [0.08,0.20]).

Likewise, receptor similarity is significantly greater be-
tween brain regions that are within the same intrin-
sic networks than between different intrinsic networks,
according to the Yeo-Krienen 7-network classification
(pspin = 0.016, 10000 repetitions, Fig. 3b [191]). This
suggests that areas that are in the same cognitive sys-
tem tend to have similar receptor profiles [193]. Sig-

nificance was assessed non-parametrically by permuting
the intrinsic network affiliations while preserving spatial
autocorrelation (“spin test”; [3, 91]). We also find that
receptor similarity is significantly correlated with func-
tional connectivity, after regressing Euclidean distance
from both matrices (Pearson’s r(4948) = 0.22, p < 0.001,
CI = [0.20, 0.25]). In other words, we observe that brain
regions with similar receptor and transporter composi-
tion show greater functional co-activation. Collectively,
these results demonstrate that receptor profiles are sys-
tematically aligned with patterns of structural and func-
tional connectivity above and beyond spatial proximity,
consistent with the notion that receptor profiles guide
inter-regional signaling.

Since neurotransmitter receptor and transporter dis-
tributions are organized according to structural and
functional architectures, we next asked whether recep-
tor/transporter distributions might augment the cou-
pling between brain structure and function. To quan-
tify structure-function coupling, we relied on the com-
municability of the weighted structural connectome, de-
fined as the weighted average of all walks and paths be-
tween two brain regions (but see results using alternative
methods in Fig. S2). Communicability represents a form
of decentralized diffusive communication on the struc-
tural connectome [26], and has been previously shown
to mediate the link between brain structure and func-
tion [41, 60, 144]. Structure-function coupling at every
brain region is defined as the adjusted R? of a simple
linear regression model that fits regional communicabil-
ity (i.e. the communicability between a brain region to
every other brain region) to regional functional connec-



tivity (i.e. the functional connectivity between a brain
region and every other brain region). We then included
regional receptor similarity as an independent variable,
to assess how receptor information changes structure-
function coupling. Significance was assessed against a
null distribution of adjusted R? from a model that adds
a rotated regional receptor similarity vector (10 000 rep-
etitions, one-sided). Next, we cross-validated each re-
gression model using a distance-dependent method that
was previously developed in-house (Fig. S4; see Methods
for details [61]). We find that including receptor pro-
files as an input variable alongside brain structure sig-
nificantly improves the prediction of regional functional
connectivity in unimodal areas and the paracentral lob-
ule (Fig. 3c).

Receptor profiles shape oscillatory neural dynamics

Given that neurotransmitter receptors modulate the
firing rates of neurons and therefore population activity,
we sought to relate the cortical patterning of neurotrans-
mitter receptors to neural oscillations [151]. We used
MEG power spectra across six canonical frequency bands
from 33 unrelated participants in the Human Connec-
tome Project (see Methods for details; [57, 147, 1771).
We fit a multiple linear regression model that predicts
the cortical power distribution of each frequency band
from neurotransmitter receptor and transporter densi-
ties. We then cross-validated the model using a distance-
dependent method (Fig. S5; see Methods for details). In
addition to the cross-validation, we assess the signifi-
cance of each model against a spin-permuted null model
(10000 repetitions) and find that all models are signifi-
cant after FDR-correction (pspin < 0.05, one-sided) [15].
We find a close fit between receptor densities and MEG-
derived power (0.81 < Rgdj < 0.94; Fig. 4a), suggesting
that overlapping spatial topographies of multiple neuro-
transmitter systems may ultimately manifest as coherent
oscillatory patterns.

To identify independent variables  (recep-
tors/transporters) that contribute most to the fit,
we applied dominance analysis, a technique that assigns
a proportion of the final dej to each independent
variable [7]. Dominance was normalized by the total fit
of the model (dej)’ such that dominance is comparable
across models (Fig. 4b). We find that, compared to other
receptors, the spatial distribution of MOR (opioid), Hs
(histamine), and o482 make a large contribution to the
fit between receptors and lower-frequency (theta, alpha)
power bands [117, 119, 186, 189, 198]. Interestingly,
we find that faster frequency bands (beta, low gamma)
are linked with fast-acting ionotropic receptors such as
a2 and GABA,, although we note that the ionotropic
NMDA receptor makes little contribution across all
frequency bands. The prominence of ionotropic recep-
tors is also observed in the autoradiography dataset
(see Replication using autoradiography and Fig. S6).

7

Additionally, when we stratify dominance by receptor
classes, we find that inhibitory, non-monoamine, and
Gi-coupled receptors are more dominant than excitatory,
monoamine, and Gs-coupled receptors, respectively
(Fig. S3a).

Mapping receptors to cognitive function

Previously, we showed that receptor and transporter
distributions follow the structural and functional organi-
zation of the brain, and that receptors are closely linked
to neural dynamics. In this and the next subsections,
we investigate how the spatial distribution of neurotrans-
mitter receptors and transporters correspond to cognitive
processes and disease vulnerability.

We used Neurosynth to derive meta-analytic task ac-
tivation maps, which represent the probability that spe-
cific brain regions are activated during multiple cogni-
tive tasks [190]. We selected a subset of 123 cognitive
processes at the intersection of Neurosynth and the Cog-
nitive Atlas [61, 120], and parcellated the data into the
same 100-region atlas used for receptor maps, resulting
in a region x cognitive process matrix of functional ac-
tivations. We then applied partial least squares (PLS)
analysis to identify a multivariate mapping between neu-
rotransmitter receptors/transporters and functional acti-
vation maps (see Methods for details and Table S2 for the
complete list of 123 cognitive terms; [82, 95]).

PLS analysis extracted a significant latent variable re-
lating receptor/transporter densities to functional acti-
vation across the brain (pgin = 0.010, one-tailed). The
latent variable represents the dominant spatial pattern
of receptor distributions (receptor weights) and func-
tional activations (cognitive weights) that together cap-
ture 56% of the covariance between the two datasets
(Fig. 5a). Projecting the receptor density (functional
activation) matrix back onto the receptor (cognitive)
weights reflects how well a brain area exhibits the re-
ceptor and cognitive weighted pattern, which we refer
to as “receptor scores” and “cognitive scores”, respec-
tively (Fig. 5b, c¢). The receptor and cognitive score
patterns reveal a sensory-fugal spatial gradient, separat-
ing limbic, paralimbic, and insular cortices from visual
and somatosensory cortices. We then cross-validated the
correlation between receptor and cognitive scores us-
ing a distance-dependent method (Fig. 5d, mean out-of-
sample Pearson’s 7(98) = 0.60, pspin = 0.03, one-sided;
see Methods for details on the cross-validation). This re-
sult demonstrates a link between receptor distributions
and cognitive specialization that is perhaps mediated by
laminar differentiation and synaptic hierarchies.

To identify the receptors and cognitive processes that
contribute most to the spatial pattern in Fig. 5b and c, we
correlated each variable with the score pattern (Fig. 5e—f;
for all stable term loadings, see Fig. S7). This results in a
“loading” for each receptor and cognitive process, where
positively loaded receptors covary with positively loaded
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Figure 5. Mapping receptors to cognitive function | (a) Using partial least squares analysis (PLS), we find a significant latent
variable that accounts for 56% of the covariation between receptor distributions and Neurosynth-derived cognitive functional
activation (pspin = 0.010, 10 000 repetitions, one-sided). (b)—(c) This latent variable represents a pattern of coactivation between
receptors (“receptor scores”) and cognitive terms (“cognitive scores”). (d) The PLS model was cross-validated using a method
that stratifies the training (yellow points) and test set (grey points) based on the distance between each node to a source node
(red point), and the procedure is repeated such that each brain region is assigned as the source node once (100 repetitions). The
significance of the mean out-of-sample test-set correlation was assessed against a null distribution of mean correlation constructed
by rotating the receptor density matrix prior to the PLS analysis (see Methods for details). (e) Receptor loadings are computed
as the correlation (Pearson’s r) between each receptor’s distribution across the cortex and the PLS-derived scores, and can be
interpreted as the contribution of each receptor to the latent variable. (f) Similarly, cognitive loadings are computed as the
correlation (Pearson’s r) between each term’s functional activation across brain regions and the PLS-derived scores, and can be
interpreted as the cognitive processes that contribute most to the latent variable. Here, only the 25% most positively and negatively
loaded cognitive processes are shown. For all stable cognitive loadings, see Fig. S7 and for all 123 cognitive processes included in
the analysis, see Table S2. 95% confidence intervals are estimated for receptor and cognitive loadings using bootstrap resampling
(10000 repetitions).

cognitive processes in positively scored brain regions,
and vice versa for negative loadings. Interestingly, we
find that almost all receptors/transporters have positive
loading, with metabotropic serotonergic and dopamin-
ergic receptors having the greatest loadings (Fig. Se,
Fig. S3b). The cognitive processes with large positive
loadings are enriched for emotional and affective pro-
cesses such as “emotion”, “valence”, and “fear”. This sug-
gests that the combination of serotonergic and dopamin-
ergic receptor distributions covary with mood-related
functional activation in insular and limbic regions, con-
sistent with the role of serotonin and dopamine neuro-
transmitter systems in mood processing and mood disor-
ders [129, 173]. On the other hand, we find that only

NET has stable negative loading, and that it spatially
covaries with functions such as “planning”, “skill”, and
“fixation” in primarily unimodal regions. This is consis-
tent with the notion that norepinephrine systems are in-
volved in integrative functions that require coordination
across segregated brain regions [127, 149, 150]. Col-
lectively, these results demonstrate a direct link between
cortex-wide molecular receptor distributions and func-
tional specialization.
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Figure 6. Mapping receptors to disease vulnerability | Using a multilinear model, neurotransmitter receptor/transporter distri-
butions were fit to patterns of cortical abnormality for thirteen neurological, psychiatric, and neurodevelopmental disorders, col-
lected by the ENIGMA consortium [85, 169]. (a) The significance of each model is assessed using a spatial autocorrelation preserv-
ing null model and is corrected for multiple comparisons (FDR). Asterisks denote significant models (FDR-corrected pspin < 0.05,
one-sided [15]). (b) Dominance analysis distributes the fit of the model across input variables such that the contribution of each
variable can be assessed and compared to other input variables. The percent contribution of each input variable is defined as the
variable’s dominance normalized by the total fit (Rfdj) of the model. Note that dominance analysis is not applied to the input
variables of non-significant models (i.e. 22q deletion syndrome, idiopathic generalized epilepsy, OCD, schizotypy), and that this
analysis is conducted using the Desikan-Killiany atlas because this is the only representation of ENIGMA datasets [33].

Mapping receptors and transporters to disease
vulnerability

Neurotransmitter receptors and transporters are impli-
cated in multiple diseases and disorders. Identifying the
neurotransmitter receptors/transporters that correspond
to specific disorders is important for developing new
therapeutic drugs. We therefore sought to relate neuro-
transmitter receptors and transporters to patterns of cor-
tical abnormality across a range of neurological, develop-
mental, and psychiatric disorders. We used datasets from
the ENIGMA consortium for a total of 13 disorders in-
cluding: 22q11.2 deletion syndrome (22q) [165], atten-
tion deficit hyperactivity disorder (ADHD) [67], autism
spectrum disorder (ASD) [179], idiopathic generalized
epilepsy, right and left temporal lobe epilepsy [188],
depression [140], obsessive-compulsive disorder (OCD)

[19], schizophrenia [176], bipolar disorder (BD) [64],
obesity [111], schizotypy [79], and Parkinson’s disease
(PD) [83]. While most disorders show decreases in cor-
tical thickness, some (e.g. 22q, ASD, schizotypy) also
show regional increases in cortical thickness. We there-
fore refer to the disorder profiles as “cortical abnormali-
ties”. All cortical abnormality maps were collected from
adult patients, following identical processing protocols,
for a total of over 21 000 scanned patients against almost
26 000 controls. We then fit a multiple regression model
that predicts each disorder’s cortical abnormality pat-
tern from receptor and transporter distributions (Fig. 6).
We assessed the significance of each model fit against
an FDR-corrected one-sided spatial-autocorrelation pre-
serving null model, and evaluated each model using
distance-dependent cross-validation (Fig. S8; see Meth-
ods for details on the cross-validation).



Figure 6a shows how receptor distributions map onto
cortical abnormaltiy patterns across multiple disorders.
We find that some disorders are more heavily influenced
by receptor distribution than others (0.17 < Rﬁdj < 0.76).
22q deletion syndrome, idiopathic generalized epilepsy,
OCD, and schizotypy show low and non-significant cor-
respondence with receptor distributions, whereas ADHD,
autism, and temporal lobe epilepsies show greater corre-
spondence with receptor distributions. The dominance
analysis in Figure 6b shows the contribution of each in-
put variable to the fit of the model, normalized by the
total fit (adjusted R?). Interestingly, we find that sero-
tonin transporter (5-HTT) distributions contribute more
to schizophrenia and bipolar disorder disorder profiles
than any other receptors. Furthermore, the mu-opioid
receptor is the strongest contributor of ADHD cortical ab-
normalities, consistent with findings from animal models
[29, 130], and three of the four greatest contributors to
the obesity cortical profile are serotonergic [178]. We
also note that in some cases the analyses do not neces-
sarily recover the expected relationships. For instance, in
PD, the dopamine receptors are not implicated, likely be-
cause the analysis was restricted to cortex only. Addition-
ally, serotonin receptors do not make large contributions
to depression, possibly because changes in cortical thick-
ness does not directly measure the primary pathophysi-
ology associated with some brain diseases. Although this
analysis points to mappings between receptors and dis-
order profiles, we find no significant differential contri-
bution of receptor classes to disorder profiles (Fig. S3c).
Our results present an initial step towards a comprehen-
sive “look-up table” that relates neurotransmitter systems
to multiple brain disorders.

Replication using autoradiography

In the present report, we comprehensively situate neu-
rotransmitter receptor and transporter densities within
the brain’s structural and functional architecture. How-
ever, estimates for neurotransmitter receptor densities
are acquired from PET imaging alone, and the way in
which densities are quantified varies across radioligands,
image acquisition protocols, and preprocessing. Autora-
diography is an alternative technique to measure recep-
tor density, and captures local densities at a defined num-
ber of post-mortem brain sections [196]. Due to the high
cost and labor intensity of acquiring autoradiographs,
there does not yet exist a complete autoradiography 3-D
cross-cortex atlas of receptors (but see Funck et al. [50]).

Nonetheless, we repeated the analyses in an au-
toradiography dataset of 15 neurotransmitter receptors
across 44 cytoarchitectonically defined cortical areas,
from three post-mortem brains [59, 194]. This set of
15 neurotransmitter receptors consists of a diverse set
of ionotropic and metabotropic receptors, including exci-
tatory glutamate, acetylcholine, and norepinephrine re-
ceptors (see Table S1 for a complete list of receptors).
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Importantly, eight of the fifteen receptors in the autora-
diography dataset are not included in the PET dataset,
which precludes direct comparisons between the two
datasets. Receptor similarity is shown in Fig. S9a. De-
spite the alternate set of neurotransmitter receptors, we
find that autoradiography-derived receptor similarity is
significantly correlated with PET-derived receptor sim-
ilarity (Pearson’s r(1033) = 0.38, p < 0.001, CI =
[0.33,0.43]; Fig. S9a), and decays exponentially with
Euclidean distance. Additionally, autoradiography- and
PET-derived receptor gradients are correlated (Pearson’s
r(44) = 0.50, pperm = 0.0004, CI = [0.25,0.69], two-
sided). Next, we find that autoradiography-derived re-
ceptor densities follow similar architectural patterns as
the PET-derived receptor densities. Receptor similarity is
non-significantly greater between structurally connected
brain regions (p = 0.19), and significantly correlated
with structural connectivity (Pearson’s r(329) = 0.39,
p < 0.001, CI = [0.30,0.48]; Fig. S9d). It is also sig-
nificantly greater in regions within the same intrinsic
network (pepin = 0.03), and is significantly correlated
with functional connectivity (Pearson’s 7(1033) = 0.21,
p < 0.001, CI = [0.16,0.28]; Fig. S9e). As before, recep-
tor information augments structure-function coupling in
visual, paracentral, and somatomotor regions (Fig. S9f).
Finally, we show correlations of receptor density distri-
bution between every pair of receptors in Fig. S9g.

Since the autoradiography dataset has a more di-
verse set of ionotropic and metabotropic receptors, we
also asked whether we could replicate the dominance
of ionotropic receptors for MEG oscillations. When we
fit the fifteen autoradiography neurotransmitter recep-
tors to MEG power, we find that AMPA, NMDA, GABA,,
and ay4f2,—all ionotropic receptors—are most dominant
(Fig. S6). This confirms that the fast oscillatory dynamics
captured by MEG are closely related to the fluctuations
in neural activity modulated by ionotropic neurotrans-
mitter receptors.

Finally, we repeat analyses mapping receptor densi-
ties to cognitive functional activation and disease vul-
nerability =~ We find a similar topographic gradient
linking autoradiography-derived receptor densities to
Neurosynth-derived functional activations (Fig. S10a).
Indeed, PET- and autoradiography-derived receptor and
cognitive scores are correlated (Fig. S9b; Pearson’s r =
—0.49, pperm = 0.0004, CI = [-0.68,—0.23] for recep-
tor scores; Pearson’s r = —0.75, pperm = 0.0003, CI =
[—0.85, —0.59] for cognitive scores). We also find consis-
tencies regarding the loadings of receptors (Fig. S10c)
and cognitive processes (Fig. S10d). Next, when we
map autoradiography-derived receptor densities to cor-
tical abnormality patterns of multiple disorders, we find
prominent associations with receptors that were not in-
cluded in the PET dataset, including a relationship be-
tween the ionotropic glutamate receptor kainate and de-
pression (Fig. S11; [88]).



Sensitivity and robustness analyses

Finally, to ensure results are not influenced by spe-
cific methodological choices, we repeated analyses using
different parcellation resolutions, different receptor sub-
sets, and we compared alternative PET tracers to the cho-
sen PET tracers in the present report. Due to the low spa-
tial resolution of PET tracer binding, we opted to present
our main results using a coarse resolution of 100 corti-
cal regions [139]. However, when using a parcellation
resolution of 200 and 400 cortical regions [139], we find
that the mean receptor density and receptor similarity
remains consistent (Fig. S12). We next asked whether
any single receptor or transporter disproportionately in-
fluences receptor similarity. To test this, we iteratively
removed a single receptor/transporter from the dataset
and recomputed the receptor similarity matrix. These
19 different receptor similarity matrices are all highly
correlated with the original similarity matrix (Pearson’s
r(4948) > 0.97), confirming that the correspondence be-
tween regional receptor profiles is not driven by a single
neurotransmitter receptor/transporter.

Constructing a harmonized set of PET neurotransmit-
ter receptor maps necessitated several methodological
decisions. We combined PET maps from different re-
search groups that used the same tracer, except for data
from the Neurobiology Research Unit in Copenhagen
(including [13] and [106]; see https://xtra.nru.dk/)
because these images were converted from quantita-
tive PET Units to units of density (pmol/mL) using au-
toradiography data. We combined two P943 (5HTI1p
[38, 51, 138]), two FLB457 (D, [134, 157]), three
ABP688 (mGluR5 [36, 155]), and four FEOBV (VAChT
[1, 11]) tracer maps separately, all of which were highly
correlated within tracer groups (Fig. S1a). Next, when
multiple tracers were available for the same receptor or
transporter, we opted for maps constructed from a larger
number of participants (Fig. S1b; see Methods for de-
tails).

Finally, we tested whether participant age affects the
reported results. However, only mean age of individuals
included in each tracer map was available. Therefore, we
fit a linear model between the mean age of scanned par-
ticipants contributing to each receptor/transporter tracer
map and the z-scored receptor/transporter density, for
each brain region separately. We then subtracted the
relationship with age from the original receptor densi-
ties, resulting in an age-regressed receptor density ma-
trix. We find that both age-regressed receptor density
and age-regressed receptor similarity is highly correlated
with the original receptor density/similarity (Pearson’s
r(4948) = 0.79, p < 0.001, CI = [0.77,0.80] and Pearson’s
r(4948) = 0.97, p < 0.001, CI = [0.97,0.98] respectively;
Fig. S13), suggesting that age has negligible effect on the
reported findings. However, we note that this analysis is
not sensitive to individual subject variability and that cer-
tain neurotransmitter receptor systems show changes in
receptor availability with age [27, 76, 143].
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DISCUSSION

In the present report, we curate a comprehensive 3-D
atlas of 19 neurotransmitter receptors and transporters.
We demonstrate that chemoarchitecture is a key layer of
the multi-scale organization of the brain. Neurotransmit-
ter receptor profiles closely align with the structural con-
nectivity of the brain and mediate its link with function,
including neurophysiological oscillatory dynamics, and
resting state hemodynamic functional connectivity. The
overlapping topographic distributions of these receptors
ultimately manifest as patterns of cognitive specializa-
tion and disease vulnerability.

A key question in neuroscience remains how the
brain’s structural architecture gives rise to its function
[6, 163]. The relationship between whole-brain struc-
ture and function has been viewed through the lens of
“connectomics”, in which the brain’s structural or func-
tional architectures are represented by regional nodes
interconnected by structural and functional links. The
key assumption of this model is that nodes are homoge-
nous, effectively abstracting away important microarchi-
tectural differences between regions. The present work
is part of an emerging effort to annotate the connectome
with molecular, cellular, and laminar attributes [183].
Indeed, recent work has incorporated microarray gene
transcription [21, 61], cell types [4, 145], myelination
[31, 32, 69], laminar differentiation [185], and intrinsic
dynamics [55, 89, 100, 148] into structural and func-
tional models of the brain.

Neurotransmitter receptors and transporters are an
important molecular annotation for bridging brain struc-
ture to brain function. Neurotransmitter receptors sup-
port signal propagation across electrochemical synapses
and tune neural gain [149, 152]. Despite their im-
portance, a comprehensive cortical map of neurotrans-
mitter receptors has remained elusive due to numerous
methodological and data sharing challenges (but see the
ongoing PET-BIDS effort as well as the OpenNeuro PET
initiative at https://openneuropet.github.io/ [80, 108]).
The present study is an ongoing Open Science grass-
roots effort to assemble harmonized high-resolution nor-
mative images of receptors and transporters that can
be used to annotate connectomic models of the brain.
This work builds on previous initiatives to map recep-
tor densities using autoradiography, which has discov-
ered prominent gradients of receptor expression in both
human and macaque brains [48, 59, 194]. Importantly,
we find consistent results between autoradiography and
PET datasets, which is encouraging because the PET
dataset consists of a different group of receptors and
transporters, and has the added advantage of provid-
ing in vivo whole-brain data in large samples of healthy
young participants.

We find that structurally connected areas have more
similar receptor profiles, suggesting that neurotransmit-
ter receptors are systematically aligned with network
structure to regulate inter-regional communication. In-
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deed, we find a prominent link between receptor distri-
bution and function, including correlated receptor sim-
ilarity and functional connectivity, as well as greater
receptor similarity within intrinsic functional networks.
These results support the idea that the emergent func-
tional architecture strongly depends on the underlying
chemoarchitecture [151, 193]. Interestingly, we find that
the canonical electrophysiological frequency bands can
be captured by the overlapping topographies of multiple
receptors, consistent with the notion that receptors in-
fluence function by tuning gain and synchrony between
neuronal populations.

Since receptors are correlated with multiple features
of brain structure and function, a natural next question
is how receptor distributions relate to psychological pro-
cesses. We find a spatial gradient of receptor profiles that
separates limbic and insular areas from somatosensory
and visual regions. This gradient represents a pattern
of covariation between subsets of receptors and cogni-
tive activations. Interestingly, although individual recep-
tors have been associated with specific functions (i.e. D1
and selective attention [110]), our findings suggest that
the combined spatial distribution of serotonergic and
dopaminergic receptors underlie patterns of cognitive ac-
tivation related to affect. Altogether these results offer
clues about how multiple neurotransmitter systems col-
lectively influence cognitive functions, and present novel
hypotheses that future causal studies can test.

Finally, we discover a robust spatial concordance be-
tween multiple receptor maps and cortical abnormal-
ity profiles across a wide range of brain disorders. A
key step toward developing therapies for specific syn-
dromes is to reliably map them onto underlying neural
systems. This goal is challenging because psychiatric and
neurological nosology is built around clinical features,
rather than neurobiological mechanisms [71]. Our re-
sults complement some previously established associa-
tions between disorders and neurotransmitter systems,
and also reveal new associations. For instance, we find
that the serotonin transporter is the strongest contribu-
tor to schizophrenia and bipolar disorder, and the third
strongest contributor to depression, consistent with the
fact that mood disorders are often accompanied with ab-
normal serotonin signaling [77, 162]. Additionally, we
find that serotonin receptors are associated with obesity,
consistent with the notion that serotonin systems regu-
late homeostatic and hedonic circuitry and are therefore
implicated in food intake [178]. On the other hand, we
find associations that have some preliminary support in
the literature, but to our knowledge have not been con-
clusively established and adopted into clinical practice,
including histamine Hs in Parkinson’s disease [126, 142],
MOR in ADHD [29, 130], and D; and NET in tempo-
ral lobe epilepsy [25, 56, 161]. Mapping disease phe-
notypes to receptor profiles will help to identify novel
targets for pharmacotherapy [78]. This analysis is re-
stricted to a single perspective of disease pathology (cor-
tical thinning/thickening) and should be expanded in fu-
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ture work to encompass other forms of disease presenta-
tion as well as the effects of age and pathology on recep-
tor/transporter density.

Collectively, the main results in the present report aim
to go beyond traditional one-to-one (i.e. univariate) as-
sociations between receptors and brain function, toward
considering how multiple neurotransmitter systems work
together. The present report builds on the theories gen-
erated by previous neurochemical and pharmacological
causal studies, and it is encouraging to see consistent
results at the level of the whole-brain, across multiple
neurotransmitter systems, and using different imaging
modalities. Furthermore, the comprehensive approach
of this study showcases novel associations that may not
have been considered before. This large-scale character-
ization of receptor systems should be validated in, and
will hopefully inspire, future causal studies, driving the
cycle of discovery. Altogether, our data and analyses pro-
vide a framework that allows us to test predictions from
the wider literature and consolidate knowledge about
neurotransmitter systems.

The PET receptor dataset that is presented here aver-
ages individual scans together into a single average map
of receptor densities, which is intended to be represen-
tative of the healthy population. However, due to this
averaging, the effect of age and sex are not thoroughly
analyzed. How receptor architecture changes in healthy
aging and across sexes remains an outstanding question,
often limited by small sample sizes and the lack of lon-
gitudinal data (but see Nordin et al. [105] for an excit-
ing prospective longitudinal dopamine study). Nonethe-
less, previously published literature has reported greater
whole-brain glutamate receptor densities in men [155],
greater kappa-opioid receptor density in men [184], and
greater mu-opioid receptor density in women [197].
Likewise, dopamine D1 and D2 receptor availability is
commonly acknowledged to decrease with age in the
subcortex [70, 143], serotonin transporters and recep-
tors have been reported to be significantly lower in older
adults [76], and GABA, density is reported to be higher
in older adults [27]. Future research is necessary to com-
prehensively disentangle the relationship between recep-
tor expression, age, and sex.

An important future direction for studying how neu-
rotransmitter systems comprehensively map onto brain
structure and function is to focus on subcortical receptor
densities. Although the 19-receptor/transporter density
dataset includes subcortical volumes, the present anal-
yses were restricted to the cortex. This was motivated
by the lower signal-to-noise ratio and data reliability in
subcortex across multiple imaging modalities (e.g. MEG
[8, 47]) as well as lack of available data in other modal-
ities (e.g. autoradiography [194]). Conducting a sepa-
rate subcortical analysis would complement the present
cortical perspective of chemoarchitecture. Indeed, multi-
ple neurotransmitter projection systems originate in the
subcortex [149] and neurodegenerative disease progres-
sion has been linked with abnormal subcortical receptor



expression [87, 164]. Ultimately, characterizing hetero-
geneous subcortical receptor distributions is an exciting
frontier for future research.

The present work should be considered alongside
some important methodological considerations. First,
main analyses were conducted using PET images, which
detect tracer uptake at a low spatial resolution and with-
out laminar specificity. Although results were replicated
using an autoradiography dataset, and in a finer par-
cellation resolution, a comprehensive atlas of laminar-
resolved receptor density measurements is necessary to
fully understand how regional variations in receptor den-
sities affect brain structure and function [115]. Second,
PET tracer maps were acquired around the world, in dif-
ferent participants, on different scanners, and using spe-
cific image acquisition and processing protocols recom-
mended for each individual radioligand [107, 182]. To
mitigate this challenge, we normalized the spatial dis-
tributions and focused only on analyses related to the
relative spatial topographies of receptors as opposed to
the absolute values. Third, the linear models used in the
present analyses assume independence between observa-
tions and linear relationships between receptors [40]; we
therefore employ spatial-autocorrelation preserving null
models to account for the spatial dependencies between
regions throughout the report. Fourth, analyses were re-
stricted to the cortex, obscuring the contributions of sub-
cortical neuromodulatory systems. Fifth, although we re-
peat our analyses in an autoradiography dataset, eight
of the fifteen receptors included in the autoradiography
dataset are not included in the PET datasets and there-
fore a direct comparison between datasets was not pos-
sible. Altogether, a 3-D whole-brain comprehensive neu-
rotransmitter receptor density dataset constructed using
autoradiographs would be a valuable complement to the
present work [50, 115, 194].

In summary, we assemble a normative 3-D atlas of
neurotransmitter receptors in the human brain. We
systematically map receptors to connectivity, dynamics,
cognitive specialization, and disease vulnerability. Our
work uncovers a fundamental organizational feature of
the brain and provides new direction for a multi-scale
systems-level understanding of brain structure and func-
tion.

METHODS

All code and data used to perform the analy-
ses can be found at https://github.com/netneurolab/
hansen_receptors. = Volumetric PET images are in-
cluded in neuromaps (https://github.com/netneurolab/
neuromaps) where they can be easily converted between
template spaces [90].
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PET data acquisition

Volumetric PET images were collected for 19 different
neurotransmitter receptors and transporters across mul-
tiple studies. To protect patient confidentiality, individ-
ual participant maps were averaged within studies be-
fore being shared. Details of each study, the associated
receptor/transporter, tracer, number of healthy partici-
pants, age, and reference with full methodological de-
tails can be found in Table 1. A more extensive table can
be found in the supplementary material (Table S3) which
additionally includes the PET camera, number of males
and females, PET modelling method, reference region,
scan length, modelling notes, and additional references,
if applicable. Note that three tracer maps were shared
prior to publication, but contact information is available
for the corresponding authors (Table S3). In all cases,
only healthy participants were scanned (N = 1238, 718
males, 520 females). Images were acquired using best
practice imaging protocols recommended for each radi-
oligand [107]. Altogether, the images are an estimate
proportional to receptor densities and we therefore refer
to the measured value (i.e. binding potential, tracer dis-
tribution volume) simply as density. Note that the NMDA
receptor tracer (['®F]GE-179) binds to open (i.e. active)
NMDA receptors [94, 141]. PET images were all regis-
tered to the MNI-ICBM 152 nonlinear 2009 (version c,
asymmetric) template, then parcellated to 100, 200, and
400 regions according to the Schaefer atlas [139]. Re-
ceptors and transporters with more than one mean image
of the same tracer (i.e. 5-HT;g, D2, mGluR5, and VAChT)
were combined using a weighted average. Finally, each
tracer map corresponding to each receptor/transporter
was z-scored across regions and concatenated into a fi-
nal region by receptor matrix of relative densities.

In some cases, more than one tracer map was available
for the same neurotransmitter receptor/transporter. We
show the comparisons between tracers in Fig. S1b for
the following neurotransmitter receptors/transporters:
5-HT1, [13, 138], 5-HT1p [13, 51, 138], 5-HT2, [13,
138, 167], 5-HTT [13, 138], CB; [86, 109], Ds [2,
72, 134, 157], DAT [37, 137], GABA, [37, 106], MOR
[75, 172], and NET [35, 63]. Here we make some
specific notes: (1) 5-HTT and GABA, involve compar-
isons between the same tracers (DASB and flumazenil,
respectively) but one map is converted to density us-
ing autoradiography data (see [13] and [106]) and the
other is not [37, 38, 138]; (2) raclopride is a popular
D, tracer but has unreliable binding in the cortex, and
is therefore an inappropriate tracer to use for mapping
D, densities in the cortex, but we show its comparison to
FLB457 and another D, tracer, fallypride, for complete-
ness [2, 28, 72]; (3) the chosen carfentanil (MOR) map
was collated across carfentanil images in the PET Turku
Centre database—since our alternative map is a partly
overlapping subset of participants, we did not combine
the tracers into a single mean map [75, 172].

Synapse density. Synapse density in the cortex was
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measured in 76 healthy adults (45 males, 48.9 + 18.4
years of age) by administering ['!C]UCB-J, a PET tracer
that binds to the synaptic vesicle glycoprotein 2A (SV2A)
[18, 22, 23, 44-46, 66, 96, 112, 123, 156, 187]. Data
were collected on an HRRT PET camera for 90 min-
utes post injection. Non-displaceable binding potential
(BPxp) was modelled using SRTM2, with the centrum
semiovale as reference and £/, fixed to 0.027 (population
value). This group-averaged map was first presented in
Hansen et al. [62].

Autoradiography receptor data acquisition

Receptor autoradiography data were originally ac-
quired as described in [194]. 15 neurotransmitter re-
ceptor densities across 44 cytoarchitectonically defined
areas were collected in three post-mortem brains (age
range: 72-77, 2 males). See Table S1 for a com-
plete list of receptors included in the autoradiography
dataset, Supplementary Table 2 in [194] for the orig-
inally reported receptor densities, and https://github.
com/AlGoulas/receptor_principles for machine-readable
Python numpy files of receptor densities [59]. To best
compare PET data analyses with the autoradiography
dataset, a region-to-region mapping was manually cre-
ated between the 44 available cortical areas in the au-
toradiography dataset and the 50 left hemisphere cor-
tical Schaefer-100 regions. Four regions in the Schae-
fer atlas did not have a suitable mapping to the autora-
diography atlas. As such, the 44-region autoradiogra-
phy atlas was converted to 46 Schaefer left hemisphere
regions. Finally, receptor densities were concatenated
and z-scored to create a single map of receptor densities
across the cortex.

Structural and functional data acquisition

Following the procedure described in de Wael et al.
[30], we obtained structural and functional magnetic
resonance imaging (MRI) data for 326 unrelated par-
ticipants (age range 22-35 years, 145 males) from the
Human Connectome Project (HCP; S900 release [177]).
All four resting state fMRI scans (two scans (R/L and
L/R phase encoding directions) on day 1 and two scans
(R/L and L/R phase encoding directions) on day 2, each
about 15 min long; TR=720 ms), as well as diffusion
weighted imaging (DWI) data were available for all par-
ticipants. All the structural and functional MRI data
were pre-processed using HCP minimal pre-processing
pipelines [57, 177]. We provide a brief description of
data pre-processing below, while detailed information re-
garding data acquisition and pre-processing is available
elsewhere [57, 177].
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Structural network reconstruction

DWI data was pre-processed using the MRtrix3 pack-
age [171] (https://www.mrtrix.org/). More specifically,
fiber orientation distributions were generated using the
multi-shell multi-tissue constrained spherical deconvolu-
tion algorithm from MRtrix [34, 73]. White matter edges
were then reconstructed using probabilistic streamline
tractography based on the generated fiber orientation
distributions [170]. The tract weights were then opti-
mized by estimating an appropriate cross-section multi-
plier for each streamline following the procedure pro-
posed by Smith et al. [158] and a connectivity ma-
trix was built for each participant using the 100-region
Schaefer parcellation [139]. A group-consensus binary
network was constructed using a method that preserves
the density and edge-length distributions of the indi-
vidual connectomes [17, 98, 99]. Edges in the group-
consensus network were assigned weights by averaging
the log-transformed streamline count of non-zero edges
across participants. Edge weights were then scaled to
values between 0 and 1.

Functional network reconstruction

All 3T functional MRI time-series were corrected for
gradient nonlinearity, head motion using a rigid body
transformation, and geometric distortions using scan
pairs with opposite phase encoding directions (R/L,
L/R) [30]. Further pre-processing steps include co-
registration of the corrected images to the T1w structural
MR images, brain extraction, normalization of whole
brain intensity, high-pass filtering (>2000s FWHM; to
correct for scanner drifts), and removing additional noise
using the ICA-FIX process [30, 131]. The pre-processed
time-series were then parcellated to 100 cortical brain re-
gions according to the Schaefer atlas [139]. The parcel-
lated time-series were used to construct functional con-
nectivity matrices as a Pearson correlation coefficient be-
tween pairs of regional time-series for each of the four
scans of each participant. A group-average functional
connectivity matrix was constructed as the mean func-
tional connectivity across all individuals and scans.

Structure-function coupling

At each brain region, a simple linear regression model
was used to predict functional connectivity from commu-
nicability. Communicability is defined as the weighted
average of all walks and paths between two brain
regions, and represents diffusive communication [26,
42]. Additionally, communicability has been previously
demonstrated as an important bridge between brain
structure and function [41, 60, 144]. In the receptor-
informed model, receptor similarity between the region
of interest and every other region was included as an
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additional independent variable. Coupling was defined
as the adjusted R? of the model. The significance of
the receptor-informed structure-function coupling was
assessed against a null distribution of adjusted R? from
a model that adds a rotated regional receptor similar-
ity vector (10000 repetitions). This ensures that the in-
crease in R? when receptor information is included in the
model is robust against the addition of a random variable
with identical spatial autocorrelation.

MEG power

6-minute resting state eyes-open magenetoen-
cephalography (MEG) time-series were acquired from
the Human Connectome Project (HCP, S1200 release)
for 33 unrelated participants (age range 22—35, 17
males) [57, 177]. Complete MEG acquisition protocols
can be found in the HCP S1200 Release Manual. For
each participant, we computed the power spectrum at
the vertex level across six different frequency bands:
delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz),
beta (15-29 Hz), low gamma (30-59 Hz), and high
gamma (60-90 Hz), using the open-source software,
Brainstorm [166]. The preprocessing was performed
by applying notch filters at 60, 120, 180, 240, and 300
Hz, and was followed by a high-pass filter at 0.3 Hz to
remove slow-wave and DC-offset artifacts. Preprocessed
sensor-level data was used to obtain a source estimation
on HCP’s fsLR4k cortex surface for each participant.
Head models were computed using overlapping spheres
and the data and noise covariance matrices were esti-
mated from the resting state MEG and noise recordings.
Brainstorm’s linearly constrained minimum variance
(LCMV) beamformers method was applied to obtain the
source activity for each participant. Welch’s method was
then applied to estimate power spectrum density (PSD)
for the source-level data, using overlapping windows
of length 4 seconds with 50% overlap. Average power
at each frequency band was then calculated for each
vertex (i.e. source). Source-level power data was then
parcellated into 100 cortical regions for each frequency
band [139].

ENIGMA cortical abnormality maps

The ENIGMA (Enhancing Neuroimaging Genetics
through Meta-Analysis) Consortium is a data-sharing ini-
tiative that relies on standardized image acquisition and
processing pipelines, such that disorder maps are com-
parable [169]. Patterns of cortical abnormality were
collected for thirteen neurological, neurodevelopmen-
tal, and psychiatric disorders from the ENIGMA con-
sortium and the Enigma toolbox (https://github.com/
MICA-MNI/ENIGMA; [84]) including: 22q11.2 deletion
syndrome (22q) [165], attention deficit hyperactivity
disorder (ADHD) [67], autism spectrum disorder (ASD)
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[179], idiopathic generalized epilepsy [188], right tem-
poral lobe epilepsy [188], left temporal lobe epilepsy
[188], depression [140], obsessive-compulsive disorder
(OCD) [19], schizophrenia [176], bipolar disorder (BD)
[64], obesity [111], schizotypy [79], and Parkinson’s dis-
ease (PD) [83]. While most disorders show decreases
in cortical thickness, some (e.g. 22q, ASD, schizotypy)
also show regional increases in cortical thickness. We
therefore refer to the disorder profiles as “cortical abnor-
malities”. Altogether, over 21 000 patients were scanned
across the thirteen disorders, against almost 26 000 con-
trols. The values for each map are z-scored effect sizes
(Cohen’s d) of cortical thickness in patient populations
versus healthy controls. Note that the native and only
representatin of ENIGMA datasets is the Desikan-Killiany
atlas (68 cortical regions) [33]. For visualization pur-
poses, data are inverted such that larger values rep-
resent greater cortical thinning. Imaging and process-
ing protocols can be found at http://enigma.ini.usc.edu/
protocols/.

Dominance analysis

Dominance analysis seeks to determine the rel-
ative contribution (“dominance”) of each indepen-
dent variable to the overall fit (adjusted R?) of the
multiple linear regression model (https://github.com/
dominance-analysis/dominance-analysis [7, 20]). This
is done by fitting the same regression model on every
combination of input variables (2 — 1 submodels for a
model with p input variables). Total dominance is de-
fined as the average of the relative increase in R? when
adding a single input variable of interest to a submodel,
across all 27 — 1 submodels. The sum of the dominance
of all input variables is equal to the total adjusted R?
of the complete model, making total dominance an in-
tuitive method that partitions the total effect size across
predictors. Therefore, unlike other methods of assessing
predictor importance, such as methods based on regres-
sion coefficients or univariate correlations, dominance
analysis accounts for predictor-predictor interactions and
is interpretable. Dominance was then normalized by the
total fit (Rgdj) of the model, to make dominance fully

comparable both within and across models.

Cognitive meta-analytic activation

Probabilistic measures of the association between vox-
els and cognitive processes were obtained from Neu-
rosynth, a meta-analytic tool that synthesizes results
from more than 15 000 published fMRI studies by search-
ing for high-frequency key words (such as “pain” and “at-
tention”) that are published alongside fMRI voxel coordi-
nates (https://github.com/neurosynth/neurosynth, us-
ing the volumetric association test maps [190]). This
measure of association is the probability that a given
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cognitive process is reported in the study if there is
activation observed at a given voxel. Although more
than a thousand cognitive processes are reported in Neu-
rosynth, we focus primarily on cognitive function and
therefore limit the terms of interest to cognitive and be-
havioural terms. These terms were selected from the
Cognitive Atlas, a public ontology of cognitive science
[120], which includes a comprehensive list of neurocog-
nitive processes and has been previously used in con-
junction with Neurosynth [3]. We used 123 terms,

” o«

ranging from umbrella terms (“attention”, “emotion”) to

”

specific cognitive processes (“visual attention”, “episodic
memory”), behaviours (“eating”, “sleep”), and emotional
states (“fear”, “anxiety”). The coordinates reported by
Neurosynth were parcellated according to the Schaefer-
100 atlas and z-scored [139]. The probabilistic measure
reported by Neurosynth can be interpreted as a quantita-
tive representation of how regional fluctuations in activ-
ity are related to psychological processes. The full list of

cognitive processes is shown in Table S2.

Partial least squares analysis

Partial least squares analysis (PLS) was used to relate
neurotransmitter receptor distributions to functional ac-
tivation. PLS is an unsupervised multivariate statistical
technique that decomposes the two datasets into orthog-
onal sets of latent variables with maximum covariance
[82, 95]. The latent variables consist of receptor weights,
cognitive weights, and a singular value which represents
the covariance between receptor distributions and func-
tional activations that is explained by the latent variable.
Receptor and cognitive scores are computed by project-
ing the original data onto the respective weights, such
that each brain region is assigned a receptor and cogni-
tive score. Finally, receptor loadings are computed as the
Pearson’s correlation between receptor densities and re-
ceptor scores, and vice versa for cognitive loadings. Note
that PLS analysis does not (1) speak to causal relation-
ships between receptors and cognition, (2) make specific
univariate receptor-cognition associations, and (3) pre-
clude the existence of additional relationships between
receptors and cognitive function.

The significance of the latent variable was assessed on
the singular value, against the spin-test (see Null mod-
els). In the present report, only the first latent variable
was significant; remaining latent variables were not an-
alyzed further. Finally, the correlation between receptor
and cognitive scores was cross-validated (see Distance-
dependent cross-validation). The empirical correlation be-
tween receptor and cognitive scores across all brain re-
gions was r(98) = 0.71, the mean training set correlation
was r(98) = 0.72, and the mean test set correlation was
7(98) = 0.60, pspin = 0.03, one-sided.
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Distance-dependent cross-validation

The robustness of each multilinear model was as-
sessed by cross-validating the model by using a distance-
dependent method [61]. Specifically, this method was
applied to every multilinear regression model (Fig. 3c,
4, 6) and the PLS model (Fig. 5). For each brain region
(source node), we select the 75% closest regions as the
training set, and the remaining 25% of brain regions as
the test set, for a total of 100 repetitions in the Schae-
fer atlas and 68 repetitions in the Desikan-Killiany atlas.
This stratification procedure minimizes the dependence
among the two sets due to spatial autocorrelation. In
the case of multilinear regression models, the model was
fit on the training set, and the predicted test-set output
variable (regional functional connectivity, MEG power,
or disorder maps) was correlated to the empirical test
set values. The distribution of Pearson’s correlations be-
tween predicted and empirical variables across all rep-
etitions (i.e. all brain regions) can be found in Fig. S4
(structure-function coupling), Fig. S5 (MEG power), and
Fig. S8 (disorder maps).

In the case of the PLS analysis, the model was fit on the
training set and the weights were projected onto the test
set to calculate predicted receptor and cognitive scores.
Training and test sets were defined as described above,
and the procedure was repeated for each brain region as
the source node (100 repetitions). The correlation be-
tween receptor and cognitive score was separately calcu-
lated in the training and test set. The significance of the
mean out-of-sample correlation was assessed against a
permuted null model, constructed by repeating the cross-
validation on spatial autocorrelation-preserving permu-
tations of the functional association matrix (1 000 repe-
titions, Fig. 5d).

Null models

Spatial autocorrelation-preserving permutation tests
were used to assess statistical significance of associations
across brain regions, termed “spin tests” [3, 91, 180].
We created a surface-based representation of the par-
cellation on the FreeSurfer fsaverage surface, via files
from the Connectome Mapper toolkit (https://github.
com/LTS5/cmp). We used the spherical projection of the
fsaverage surface to define spatial coordinates for each
parcel by selecting the coordinates of the vertex closest
to the center of the mass of each parcel [181]. These par-
cel coordinates were then randomly rotated, and original
parcels were reassigned the value of the closest rotated
parcel (10 000 repetitions). Parcels for which the medial
wall was closest were assigned the value of the next most
proximal parcel instead. The procedure was performed
at the parcel resolution rather than the vertex resolution
to avoid upsampling the data, and to each hemisphere
separately. Note that the spin test was not applied to
autroadiography data because of missing samples. A per-
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mutation test was applied instead.

A second null model was used to test whether recep-
tor similarity is greater in connected regions than uncon-
nected regions. This model generates a null structural
connectome that preserves the density, edge length, and
degree distributions of the empirical structural connec-
tome [16, 58, 128, 180]. Briefly, edges were binned ac-
cording to Euclidean distance. Within each bin, pairs of
edges were selected at random and swapped. This pro-
cedure was then repeated 10 000 times. To compute a p-
value, the mean receptor similarity of unconnected edges
was subtracted from the mean receptor similarity of con-
nected edges, and this difference was compared to a null
distribution of differences computed on the rewired net-
works.
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Figure S1. Comparing different PET tracer images | (a) PET maps of the same tracer were combined into a single average
receptor/transporter map. Each individual PET tracer map (y-axis) is highly correlated to the mean map (x-axis). Names indicate
the source of each PET map; see Table 1. (b) Multiple PET tracers were available for certain receptors/transporters. Scatter plots
show the correlation between the selected tracer map (z-axis) and alternative maps (y-axis).

Receptor Neurotransmitter Excitatory/Inhibitory Ionotropic/Metabotropic

AMPA glutamate excitatory ionotropic
NMDA glutamate excitatory ionotropic
Kainate glutamate excitatory ionotropic
GABAA GABA inhibitory ionotropic
GABAssz  GABA inhibitory ionotropic
GABAg GABA inhibitory metabotropic
M; acetylcholine excitatory metabotropic
M, acetylcholine inhibitory metabotropic
Ms acetylcholine excitatory metabotropic
aafa acetylcholine excitatory ionotropic
o1 norepinephrine excitatory metabotropic
s norepinephrine inhibitory metabotropic
5-HTia serotonin inhibitory metabotropic
5-HT» serotonin excitatory metabotropic
D, dopamine excitatory metabotropic

TABLE S1. Neurotransmitter receptors included in the autoradiography dataset
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Figure S2. Alternative representations of the structural connectome used in structure-function coupling | Structure-function
coupling was recomputed using (a) communicability calculated on the binary connectome, (b) matching index computed on the
weighted connectome, and (c) cosine similarity of the weighted connectome.

action
adaptation
addiction
anticipation
anxiety

arousal
association
attention
autobiographical memory
balance

belief
categorization
cognitive control
communication
competition
concept
consciousness
consolidation
context
coordination
decision
decision making
detection
discrimination
distraction

eating

efficiency

effort

emotion
emotion regulation
empathy
encoding
episodic memory
expectancy
expertise
extinction

face recognition
facial expression
familiarity

fear

fixation

focus

gaze

goal
hyperactivity
imagery
impulsivity
induction
inference
inhibition

insight
integration
intelligence
intention
interference
judgment
knowledge
language
language comprehension
learning
listening
localization
loss
maintenance
manipulation
meaning
memory
memory retrieval
mental imagery
monitoring
mood
morphology
motor control
movement
multisensory

naming

navigation

object recognition
pain

perception
planning

priming

psychosis

reading

reasoning

recall

recognition
rehearsal
reinforcement learning
response inhibition
response selection
retention

retrieval

reward anticipation
rhythm

risk

rule

salience

search

selective attention

semantic memory
sentence comprehension
skill

sleep

social cognition
spatial attention
speech perception
speech production
strategy

strength

stress

sustained attention
task difficulty
thought
uncertainty
updating

utility

valence

verbal fluency
visual attention
visual perception
word recognition
working memory

TABLE S2. Neurosynth terms | Terms that overlapped between the Neurosynth database [190] and the Cognitive Atlas [120]
were included in the PLS analysis.
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Figure S3. We compared the results from (a) the MEG power dominance analysis (Fig. 4 in the main text), (b) the PLS analysis
with cognitive activations (Fig. 5 in the main text), and (c) the disease profile dominance analysis (Fig. 6 in the main text) across
different classes of receptors (excitatory vs. inhibitory, monoamine vs. non-monoamine, metabotropic vs. ionotropic, Gs- vs. Gi-
vs. Gq-coupled pathways). Asterisks indicate significance (p < 0.05, Welch’s t-test)

a|sconly b | sc and receptors

mean correlation

mean correlation

Figure S4. Cross-validating structure-function coupling models | At every brain region, distance-dependent cross-validation
was applied to the (a) structure-function coupling model, and (b) the receptor-informed structure-function coupling model. The
mean correlation between empirical and predicted values in the test set is shown on the brain surface.
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Figure S5. Cross-validating models that predict MEG power distribution from receptor/transporter densities | All six
multilinear models between receptor/transporter densities and MEG power distributions were cross-validated using a distance-
dependent method. This method selects the 25% of regions closest to a source-region as a training set and the remaining 75%
of regions as the test set. The procedure is repeated for each brain region as the source region (68 iterations). We assessed the
prediction by correlating predicted power to the empirical power in the test set.
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Figure S6. Excitatory ionotropic receptor densities shape neural dynamics | Multilinear regression models were fit between
autoradiography-derived neurotransmitter receptor densities and MEG power, done analogously in Fig. 4. (a) Autoradiography-
derived receptor densities map closely to neural dynamics. The significance of each model is assessed using a permutation test
and is corrected for multiple comparisons (FDR). Asterisks denote significant models (FDR-corrected pperm < 0.05 [15]). (b)
Dominance analysis distributes the fit of the model across input variables such that the contribution of each variable can be
assessed and compared to other input variables. The percent contribution of each input variable is defined as the variable’s
dominance normalized by the total fit (Ridj) of the model.
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Figure S7. Neurosynth cognitive loadings | The loading for each cognitive process is calculated as the Pearson’s correlation
between functional activations across brain regions and PLS-derived receptor scores. Error bars indicate bootstrap-estimated 95%
confidence intervals (10 000 bootstrap samples). All cognitive processes with a confidence interval that changes sign are excluded.
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Figure S8. Cross-validating models that predict disorder-specific cortical abnormality from receptor/transporter densities
| All thirteen multilinear models between receptor/transporter densities and disorder-specific cortical abnormality were cross-
validated using a distance-dependent method. This method selects the 25% of regions closest to a source-region as a training
set and the remaining 75% of regions as the test set. The procedure is repeated for each brain region as the source region (68
iterations). We assessed the prediction by correlating predicted atrophy to the empirical atrophy in the test set. Note that this
analysis is conducted using the Desikan-Killiany atlas because this is the only representation of ENIGMA datasets [33].
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Figure S9. Autoradiography-informed neurotransmitter receptor densities follow similar organizational principles as PET-
informed neurotransmitter receptor densities | Autoradiography images of fifteen neurotransmitter receptors across three post-
mortem brains were acquired by Zilles and Palomero-Gallagher [194]. (a) The receptor similarity matrix is constructed by correlat-
ing receptor fingerprints at each pair of brain regions (left). PET-derived receptor similarity is correlated to autoradiography-derived
receptor similarity (Pearson’s r(1033) = 0.38, p < 0.001; right). (b) Receptor similarity decays exponentially with Euclidean dis-
tance. (c) The first principal component of autoradiography-derived receptor density (left brain plot) is non-significantly correlated
with the first principal component of PET-derived receptor density (r(44) = —0.50, pspin = 0.06, two-sided). (d) Receptor similarity
is non-significantly greater between pairs of regions that are physically connected, against a degree- and edge-length-preserving
null model (left; p = 0.19 [16]), and is significantly correlated with structural connectivity (Pearson’s (329) = 0.39, p < 0.001,
right). (e) Receptor similarity is significantly greater in regions within the same functional network as opposed to between func-
tional networks (left; psin = 0.03), and is correlated to functional connectivity (right; Pearson’s 7(1033) = 0.21, p < 0.001). (H
Consistent with PET-derived results, receptor similarity augments structure-function coupling in visual, paracentral, and somato-
motor regions. (g) Receptor co-expression (Pearson’s correlation) for every pair of receptors across 46 brain regions. Asterisks in
panel (e) denote significance. Boxplots in (d) and (e) represent the 1st, 2nd (median) and 3rd quartiles, whiskers represent the
non-outlier end-points of the distribution, and diamonds represent outliers.
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Figure S10. Mapping autoradiography-derived receptors to cognition | Partial least squares analysis was applied to
autoradiography-derived receptor densities and Neurosynth-derived cognitive functional activations, done analogously in Fig. 5.
(a) Receptor (top) and cognitive (bottom) score patterns follow a similar sensory-fugal gradient. (b) Autoradiography-derived PLS
scores are correlated with PET-derived PLS scores. (c) Receptor loadings are defined as the Pearson’s correlation between each
receptor’s distribution across the cortex and the PLS-derived receptor scores and can be interpreted as the contribution of each
receptor to the latent variable. (c) Cognitive loadings are shown for all stable positively- and negatively-loaded cognitive processes.
95% confidence intervals are estimated for receptor and cognitive loadings using bootstrap resampling (10 000 repetitions).
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Figure S11. Mapping autoradiography-derived receptors to disease vulnerability | For each disorder, we fit a multilinear
regression model between autoradiography-derived receptor densities and cortical abnormality, done analogously in Fig. 6. (a)
Model fit (adjusted R?) varies across disorders. The significance of each model is assessed using a permutation test and is corrected
for multiple comparisons (FDR). Asterisks denote significant models (FDR-corrected pperm < 0.05 [15]). (b) Dominance analysis
distributes the fit of the model across input variables such that the contribution of each variable can be assessed and compared to
other input variables. The percent contribution of each input variable is defined as the variable’s dominance normalized by the total
fit (Rfdj) of the model. Note that this analysis is conducted using the Desikan-Killiany atlas because this is the only representation
of ENIGMA datasets [33].
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Figure S12. Replicating results using different parcellation resolutions | Top: first principal gradient of normalized neuro-
transmitter receptor/transporter density is consistent across three increasingly fine parcellation resolutions (100 regions (original),
200 regions, and 400 regions) [139]. Bottom: receptor similarity matrices also demonstrate high conformity across parcellation
resolutions. Receptor similarity matrices are ordered by Yeo-Krienen intrinsic networks (order: frontoparietal, default mode, dorsal
attention, limbic, ventral attention, somatomotor, visual) [191].
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Figure S13. Age has negligible effect on the reported findings | To test age effects of the PET tracer images, we regressed out
the relationship between mean age of each tracer map and z-scored receptor densities, at each brain region separately. Age has
little impact on receptor density (left; Pearson’s 7(4948) = 0.79) and receptor similarity (right; Pearson’s r(4948) = 0.97).
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